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Abstract – We suggest an innovative distribution function of landslide sizes, based on the
non-extensive Tsallis entropy. Our result incorporates the characteristics of non-extensivity of
fragmentation into the cumulative distribution of landslide sizes. Such an approach can lead to a
groundbreaking statistical physics of landslides.
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The distribution function of landslide sizes, in terms
of areas or volumes, is fundamental for hazard risk
assessment. Many “empirical” distribution functions were
already proposed in the past decade, without any rigorous
physical foundation. For the probability density func-
tion of landslide areas, for example, the five-parameter
double Pareto distribution and the three-parameter
inverse Gamma distribution were recently proposed [1,2].
A characteristic shape is commonly observed in many
frequency distributions of landslide areas [2], in which the
landslide frequency increases to a maximum value at the
most abundant landslide size and then decreases with a
power-law tail (fig. 1). Since the state-of-the-art satellite
image is enough to resolve an object with the length scale
of 5 meter, Malamud et al. therefore claimed that the
decrease at the small end in probability density functions
of landslide areas is real, instead of causing by incomplete
data [2].
It has been argued that landslides are examples of self-

organized criticality (SOC) in nature [3]. Slope instabili-
ties develop slowly on long time scales and are relieved on
short time scales. In the context of SOC, the frequency
size distribution of landslides can be well described by
the power-law relation. The power-law distribution is
the only distribution that does not have a characteristic
length scale. Power-law frequency size distributions can be
explained in terms of scale invariance, i.e. fractal statis-
tics. In that case, the generic rollover at the small end
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in the frequency distribution of landslide areas [2] cannot
be expected in the SOC paradigm of landslides. We thus
need a new paradigm to explain the transition from large-
to small-sized landslides.
Non-extensive statistics [4,5] has been becoming a chal-

lenging framework for geophysical complex phenomena.
The fundamental idea is the concept of fragmentation, in
which the sum of the entropies of the parts that consti-
tute a fractioning object after the division is larger than
the entropy of the whole object [6]. For example, in the
context of earthquake dynamics, the non-extensive statis-
tical model hypothesizes that the mechanism of earth-
quake generation is based not only on the slippage of fault
planes and the relative displacement due to the breakage of
the asperities, but it is also caused by the fragments filling
the space between fault planes [7,8]. Using, then, the non-
extensive Tsallis formalism [5], a more realistic magnitude
distribution with both the power-law tail and the kneel-
down at the small magnitudes was deduced, providing an
excellent fit to the seismicity of several seismic regions
from a regional scale [7–10] down to the scale of the single
fault [11].
This excellent fit in the magnitude distribution shows

that non-extensivity describes well the source of self-
similarity associated with the process’ increments “infi-
nite” variance [12]. An additional source of self-similarity
may come from the process’ memory (long-range tempo-
ral correlations between earthquake magnitudes, e.g.,
see [13]), which is the case for the actual earthquake cata-
logues as recently shown by natural time analysis [14].
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Fig. 1: (Colour on-line) Probability densities on landslide areas
for three landslide datasets [2]: 11111 landslides (squares)
triggered by the 1994 Northridge earthquake in California; 4233
landslides (circles) triggered by rapid snowmelt in the Umbria
region of Italy in January 1997; 9594 landslides (diamonds)
triggered by heavy rainfall from Hurricane Mitch in Guatemala
in late October and early November 1998. The solid line is the
best fit to the three datasets using the three-parameter inverse
Gamma distribution suggested by Malamud et al. Note that
the decreases at the small end in probability density functions
of landslide areas are real, instead of causing by incomplete
landslide data [2].

Landslide is basically the fragmentation of rocks. The
use of non-extensive statistics for fragments seems a
straightforward tool to describe the distribution function
of landslide sizes, e.g., masses, volumes or areas. The
Tsallis entropy for our problem is given by

Sq = k
1−
∫

pq(V )dV

q− 1
, (1)

where k is the Boltzmann’s constant, p(V ) is the proba-
bility of finding a landslide with volume V and q is a real
number. After extremizing the entropy functional Sq [6,7],
the landslide size distribution function can be obtained by

p(V )dV =
(2− q)

1

2−q dV

[1+ (q− 1)(2− q)
q−1

2−q V ]
1

q−1

. (2)

Also, for the landslide size, the area A is another
measure easy to obtain and quite often to use [2]. It is thus
convenient to formulate the problem in terms of a landslide
size distribution function with the function of the landslide
area by means of V ∼A3/2 [2]. The resulting expression for

Fig. 2: (Colour on-line) Non-extensive fit (green line) of the
cumulative distribution function (blue circles) of areas A (in
m2) of Taiwanese landslides induced by the Chi-Chi earth-
quake. The non-extensive parameters are q= 1.539(±0.007)
and a= 1.398(±0.280) ∗ 10−5. Two bounded red lines indicate
the 95% confidence interval of observations.

the area distribution function of the landslides is

p(A)dA=
C1A

1/2dA

[1+C2A3/2]
1

q−1

. (3)

The probability of the area p(A) is equal to n(A)/N ,
where n(A) is the number of landslides with area A and
N the total number of landslides. C1 and C2 are constants
involving q and the proportionality constant between
A and V . Therefore, based on the first principle, the
maximum-entropy principle of utilizing the non-extensive
Tsallis entropy, we have obtained an analytic expression
for the area distribution of landslides.
To use the common frequency area distribution, the

cumulative distribution function for landslide areas is,
then, calculated as the integral of eq. (3) from A to infinity
and given by

log(N>A)= logN+
2− q

1− q
log
[

1+a(q− 1)(2−q)
1−q

q−2A3/2
]

,

(4)

where N>A is the number of landslides with areas larger
than A. q and a are the non-extensive parameters.
We here demonstrate the feasibility of the non-extensive

statistics applied to the area distribution of the Taiwanese
landslides induced by the 1999 Chi-Chi earthquake (fig. 2).
The distribution shows exactly the same features as other
distributions of landslide regions mentioned in [2]. Equa-
tion (4) can fit the dataset very well with a q∼ 1.5. The
q-value is a quantitative measure of the length scale of the
spatial interactions. A q close to 1 indicates short-ranged
spatial correlations. As q increases the physical state
(in the sense of statistical physics) becomes much more
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unstable. Note that eq. (4) is not an empirical guess for the
landslide size distribution but derived from the first princi-
ple of maximum non-extensive Tsallis entropy formalism,
which is completely universal and has an almost unlimited
range of application. The physical meaning underlying the
non-extensive entropy formalism is that the final physical
state can be considered as a collection of fragmented
parts νi which, after division, have the sum of individual
entropies larger than the entropy of the initial state (the
union of fragmented parts). That is

∑

i S(νi)>S(
⋃

νi).
This in the context of the landslide process could be
associated with the fact that the loose-measure volume
of Earth after landslide is more than the bank-measure
volume of Earth before landslide. When Earth is trans-
ported during landslide, it increases in volume because
of an increase in voids. Also, an extra benefit in the
non-extensive description of landslide sizes is that only
two parameters appeared in the cumulative distribution
function.
In summary, the use of non-extensive statistics is a

suited tool to describe the distribution function of the
fragment surfaces [7]. We here extend such a tool to
describe the landslide area distribution. The obtained
distribution function of landslide areas is not a math-
ematically trivial form. Yet, such a non-trivial result
can incorporate the characteristics of non-extensivity
of fragmentation into the cumulative distribution of
landslide areas and explains the observed kneel-down
behavior at the small landslide areas, thus fitting the real
data very well. In other words, the generic rollover in the
frequency distribution at small landslide areas [2] can be
regarded as the manifestation of the physical foundation
of the maximum non-extensive Tsallis entropy.
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